Solved

If R Is the Region Bounded By x2+y2=9,x0,y0x ^ { 2 } + y ^ { 2 } = 9 , x \geq 0 , y \geq 0

Question 76

Multiple Choice

If R is the region bounded by x2+y2=9,x0,y0x ^ { 2 } + y ^ { 2 } = 9 , x \geq 0 , y \geq 0 then \iint R (2x+5y) dA( 2 x + 5 y ) d A in polar form is


A) π2π2[03r2(2cosθ+5sinθ) dr]dθ\int _ { - \frac { \pi } { 2 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
B) ππ[03r2(2cosθ+5sinθ) dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
C) 0π2[03r2(2cosθ+5sinθ) dr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
D) 0π[03r2(2cosθ+5sinθ) dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta
E) 02π[03r2(2cosθ+5sinθ) dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } ( 2 \cos \theta + 5 \sin \theta ) d r \right] d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions