Solved

If R Is the Region Bounded By x2+y2=4,x2+y2=9x ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + y ^ { 2 } = 9

Question 86

Multiple Choice

If R is the region bounded by x2+y2=4,x2+y2=9x ^ { 2 } + y ^ { 2 } = 4 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R (x2+y) dA\left( x ^ { 2 } + y \right) d A in polar form is


A) 02π[23r(rcos2θ+sinθ) dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
B) 02π[23r2(rcos2θ+sinθ) dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
C) 0π[23r2(rcos2θ+sinθ) dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
D) 0π[23r(rcos2θ+sinθ) dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta
E) ππ[23r2(rcos2θ+sinθ) dr]dθ\int _ { - \pi } ^ { \pi } \left[ \int _ { 2 } ^ { 3 } r ^ { 2 } \left( r \cos ^ { 2 } \theta + \sin \theta \right) d r \right] d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions