Solved

The Center of Mass of a Lamina in the Shape 3x+2y=183 x + 2 y = 18

Question 91

Multiple Choice

The center of mass of a lamina in the shape of a region in the xy-plane bounded by the y-axis, 3x+2y=183 x + 2 y = 18 and y = 0 with area density ρ(x,y) =xy\rho ( x , y ) = x y is


A) (272,815) \left( \frac { 27 } { 2 } , \frac { 81 } { 5 } \right)
B) (125,185) \left( \frac { 12 } { 5 } , \frac { 18 } { 5 } \right)
C) (3(2+π) 32,3(2+π) 32) \left( \frac { 3 ( 2 + \pi ) } { 32 } , \frac { 3 ( 2 + \pi ) } { 32 } \right)
D) (38,1716) \left( \frac { 3 } { 8 } , \frac { 17 } { 16 } \right)
E) (3522,10277) \left( \frac { 35 } { 22 } , \frac { 102 } { 77 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions