Solved

Let w=tan(xyz)w = \tan ( x y z ) Then the Differential

Question 62

Multiple Choice

Let w=tan(xyz) w = \tan ( x y z ) . Then the differential dwd ^ { w } is


A) sec2(xyz) [yzdxxzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y + x y d z ]
B) sec2(xyz) [yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y + x y d z ]
C) sec2(xyz) [yzdx+xzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x + x z d y - x y d z ]
D) sec2(xyz) [yzdxxzdyxydz]\sec ^ { 2 } ( x y z ) [ y z d x - x z d y - x y d z ]
E) sec2(xyz) [yzdx+xzdy+xydz]\sec ^ { 2 } ( x y z ) [ - y z d x + x z d y + x y d z ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions