Solved

Let a(t)=costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j }

Question 1

Multiple Choice

Let a(t) =costi+sintj\mathbf { a } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } be the acceleration of an object with velocity v(t) \mathbf { v } ( t ) . If v(0) =i+j\mathbf { v } ( 0 ) = - \mathbf { i } + \mathbf { j } then v(t) \mathbf { v } ( t ) is


A) (sint+1) i(cost2) j( \sin t + 1 ) \mathbf { i } - ( \cos t - 2 ) \mathbf { j }
B) (sint1) i(cost2) j( \sin t - 1 ) \mathbf { i } - ( \cos t - 2 ) \mathbf { j }
C) (sint1) i(cost+2) j( \sin t - 1 ) \mathbf { i } - ( \cos t + 2 ) \mathbf { j }
D) (sint1) i+(cost2) j( \sin t - 1 ) \mathbf { i } + ( \cos t - 2 ) \mathbf { j }
E) (sint+1) i+(cost2) j( \sin t + 1 ) \mathbf { i } + ( \cos t - 2 ) \mathbf { j }

Correct Answer:

verifed

Verified

Related Questions