Solved

Find an Equation of Y as a Function of X x=2t+1,y=3t,t[1,3]x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]

Question 46

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t+1,y=3t,t[1,3]x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]


A) y=32x+1,1x7, left to right y = \frac { 3 } { 2 } x + 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
B) y=32x1,1x7, left to right y = \frac { 3 } { 2 } x - 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
C) y=32(x1) ,1x7, left to right y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \text { left to right }
D) y=32(x1) ,1x7, right to left y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \quad \text { right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions