Solved

Find an Equation of Y as a Function of X x=cos2t,y=3sin2t,t[0,π2]x = \cos ^ { 2 } t , \quad y = 3 \sin ^ { 2 } t , \quad t \in \left[ 0 , \frac { \pi } { 2 } \right]

Question 49

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cos2t,y=3sin2t,t[0,π2]x = \cos ^ { 2 } t , \quad y = 3 \sin ^ { 2 } t , \quad t \in \left[ 0 , \frac { \pi } { 2 } \right]


A) y=33x,0x1, left to right y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, left to right }
B) y=3+3x,0x1, left to right y = 3 + 3 x , \quad 0 \leq x \leq 1 , \quad \text { left to right }
C) y=3x,0x1, left to right y = 3 - x , \quad 0 \leq x \leq 1 \text {, left to right }
D) y=33x,0x1, right to left y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions