Solved

Find an Equation of Y as a Function of X x=2t1,y=3t2+2,t(,)x = - 2 t - 1 , \quad y = 3 t ^ { 2 } + 2 , \quad t \in ( - \infty , \infty )

Question 63

Multiple Choice

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t1,y=3t2+2,t(,) x = - 2 t - 1 , \quad y = 3 t ^ { 2 } + 2 , \quad t \in ( - \infty , \infty )


A) y=34(x1) 2+2,x(,) , right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
B) y=34(x+1) 22,x(,) , right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
C) y=34(x1) 22,x(,) , right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
D) y=34(x+1) 2+2,x(,) , right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions