Multiple Choice
Let S be a piece with boundary of a smooth 3-manifold in R4 (hypersurface) given by the equation = g(
,
,
) and let
= d
d
11ee7bcb_c6fc_6099_ae82_719973faadb8_TB9661_11 d 11ee77e1_7793_6815_a0f8_474d4dbcd8a5_TB9661_11 . Apart from sign due to orientation of S, 11ee77e1_7793_6816_a0f8_97457d751d61_TB9661_11 is equal to
A) the 3-volume of the projection of S onto the hyperplane 11ee77e1_7793_6817_a0f8_13032b247b87_TB9661_11 = 0
B) the 4-volume of the projection of S onto the hyperplane 11ee77e1_7793_6818_a0f8_43b7fef76a07_TB9661_11 = 0
C) 11ee77e1_7793_6819_a0f8_5d277b36f478_TB9661_11
D) 11ee77e1_7793_681a_a0f8_d78a3ae2089d_TB9661_11
E) None of the above
Correct Answer:

Verified
Correct Answer:
Verified
Q57: Let C be the curve of
Q58: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Let (
Q59: Use the generalized Stokes's Theorem to
Q60: If <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt=" If
Q61: You probably know by now that
Q63: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Let
Q64: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt=" A) u .
Q65: Calculate <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt=" Calculate
Q66: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Let =
Q67: Let the differential 2-form <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Let