Multiple Choice
Find a parametric representation of the curve of intersection of the paraboloid z = x2 + y2 and the plane 8x - 4y - z - 11 = 0.
A) r = (3 - 4cos(t) ) i + (3 + 2sin(t) ) j + (1 - 32cos(t) - 8sin(t) ) k, 0 t 2
B) r = (3 + 4cos(t) ) i + (3 - 2sin(t) ) j + (1 + 32cos(t) + 8sin(t) ) k, 0 t 2
C) r = (4 + 3cos(t) ) i + (-2 + 3sin(t) ) j + (24cos(t) - 12sin(t) - 29) k, 0 t 2
D) r = (-4 + 3cos(t) ) i + (2 + 3sin(t) ) j + (24cos(t) - 12sin(t) - 51) k, 0 t 2
E) r = (-3 + 4cos(t) ) i + (-3 - 2sin(t) ) j + (32cos(t) + 8sin(t) - 23) k, 0 t 2
Correct Answer:

Verified
Correct Answer:
Verified
Q40: Let r = r(s) be a curve
Q41: An object is moving to the right
Q42: The position vector of a moving particle
Q43: Find the radius of curvature of r
Q44: Find the Frenet frame for the curve
Q46: An object is moving on the curve
Q47: Find the curvature of a circle with
Q48: Find the evolute <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9661/.jpg" alt="Find the
Q49: A curve can have constant curvature <img
Q50: The position of a particle at time