Solved

Find a Parametric Representation of the Curve of Intersection of the Paraboloid

Question 45

Multiple Choice

Find a parametric representation of the curve of intersection of the paraboloid z = x2 + y2 and the plane 8x - 4y - z - 11 = 0.


A) r = (3 - 4cos(t) ) i + (3 + 2sin(t) ) j + (1 - 32cos(t) - 8sin(t) ) k, 0 \le t \le 2 π\pi
B) r = (3 + 4cos(t) ) i + (3 - 2sin(t) ) j + (1 + 32cos(t) + 8sin(t) ) k, 0 \le t \le 2 π\pi
C) r = (4 + 3cos(t) ) i + (-2 + 3sin(t) ) j + (24cos(t) - 12sin(t) - 29) k, 0 \le t \le 2 π\pi
D) r = (-4 + 3cos(t) ) i + (2 + 3sin(t) ) j + (24cos(t) - 12sin(t) - 51) k, 0 \le t \le 2 π\pi
E) r = (-3 + 4cos(t) ) i + (-3 - 2sin(t) ) j + (32cos(t) + 8sin(t) - 23) k, 0 \le t \le 2 π\pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions