Solved

Find the Trapezoid Rule Approximation for I = \approx 07837, I =

Question 1

Multiple Choice

Find the Trapezoid Rule approximation  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 for I =  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation.


A)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7837, I = π\pi /4 \approx 0.7854, Error \approx 0.0017
B)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7827, I = π\pi /4 \approx 0.7854, Error \approx 0.0027
C)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7837, I = π\pi /4 \approx 0.7854, Error \approx -0.0017
D)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7820, I = π\pi /4 \approx 0.7854, Error \approx -0.0034
E)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7862, I = π\pi /4 \approx 0.7854, Error \approx - 0.0008

Correct Answer:

verifed

Verified

Related Questions