Solved

Consider the First-Order Homogeneous System of Linear Differential Equations
x(t)=C1(11)e7t+C2(79)e9t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}

Question 76

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   Which of these is the general solution of the system? Here, C<sub>1</sub> and C<sub>2</sub> are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right)  e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right)  e^{9 t}   B)    x(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right)  e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right)  e^{-9 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right)  e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right)  e^{9 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right)  e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right)  e^{-9 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) +C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right)  e^{-9 t}
Which of these is the general solution of the system? Here, C1 and C2 are arbitrary real constants.


A) x(t) =C1(11) e7t+C2(79) e9t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
B) x(t) =C1(11) e7t+C2(79) e9t x(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
C) x(t) =C1(11) e7t+C2(79) e9t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{7 t}+C_{2}\left(\begin{array}{c}-7 \\ 9\end{array}\right) e^{9 t}
D) x(t) =C1(11) e7t+C2(79) e9t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1\end{array}\right) e^{-7 t}+C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}
E) x(t) =C1(10) +C2(79) e9t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 0\end{array}\right) +C_{2}\left(\begin{array}{c}7 \\ -9\end{array}\right) e^{-9 t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions