Solved

Consider the First-Order Nonhomogeneous Initial Value Problem

Given a Fundamental

Question 71

Multiple Choice

Consider the first-order nonhomogeneous initial value problem
 Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \mathbf{x}(t) =\psi(t)  \psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6)  \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s   B)    x(t) =\psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6)  \int_{0.6}^{t} \psi^{-1}(s) { }_{6 s}^{2 e^{5 s}} d s   C)    \mathbf{x}(t) =\psi(t)  \psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t)  \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s   D)    \mathbf{x}(t) =\psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t)  \int_{0.6}^{t} \psi^{-1}(s)  e^{2 e^{5 s}} d s
Given a fundamental matrix  Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \mathbf{x}(t) =\psi(t)  \psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6)  \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s   B)    x(t) =\psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6)  \int_{0.6}^{t} \psi^{-1}(s) { }_{6 s}^{2 e^{5 s}} d s   C)    \mathbf{x}(t) =\psi(t)  \psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t)  \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s   D)    \mathbf{x}(t) =\psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t)  \int_{0.6}^{t} \psi^{-1}(s)  e^{2 e^{5 s}} d s (t) for the system, what is the solution of this initial value problem?


A) x(t) =ψ(t) ψ1(0.6) (62) +ψ(0.6) 0.6tψ1(s) 6s2e5sds \mathbf{x}(t) =\psi(t) \psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6) \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s
B) x(t) =ψ1(0.6) (62) +ψ(0.6) 0.6tψ1(s) 6s2e5sds x(t) =\psi^{-1}(0.6) \left(\begin{array}{l}-6 \\ 2\end{array}\right) +\psi(0.6) \int_{0.6}^{t} \psi^{-1}(s) { }_{6 s}^{2 e^{5 s}} d s
C) x(t) =ψ(t) ψ1(0.6) (62) +ψ(t) 0.6tψ1(s) 6s2e5sds \mathbf{x}(t) =\psi(t) \psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t) \int_{0.6}^{t} \psi^{-1}(s) _{6 s}^{2 e^{5 s}} d s
D) x(t) =ψ1(0.6) (62) +ψ(t) 0.6tψ1(s) e2e5sds \mathbf{x}(t) =\psi^{-1}(0.6) \left(\begin{array}{c}-6 \\ 2\end{array}\right) +\psi(t) \int_{0.6}^{t} \psi^{-1}(s) e^{2 e^{5 s}} d s

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions