Solved

Consider the First-Order Homogeneous System of Linear Differential Equations

Question 75

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   is an arbitrary constant vector. A)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)  \mathbf{C}   B)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)    C C)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right]   C D)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right)  e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right]   C
What is the general solution of this system? Here,  Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? Here,   is an arbitrary constant vector. A)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)  \mathbf{C}   B)    \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right)    C C)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right)  e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right]   C D)    \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right)  e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right]   C is an arbitrary constant vector.


A) x(t) =(ete4t(t16) e4t6et3e4t3te4t3et00) C \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t-\frac{1}{6}\right) e^{4 t} \\ 6 e^{t} & -3 e^{4 t} & -3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right) \mathbf{C}
B) x(t) =(ete4t(t+16) e4t6et3e4t3te4t3et00) \mathbf{x}(t) =\left(\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right) e^{4 t} \\ 6 e^{t} & 3 e^{4 t} & 3 t e^{4 t} \\ 3 e^{t} & 0 & 0\end{array}\right) C
C) x(t) =[ete4t(t+16) e4t3et3e4t3te4t6et00] \mathbf{x}(t) =\left[\begin{array}{lll}e^{t} & e^{4 t} & \left(t+\frac{1}{6}\right) e^{4 t} \\ -3 e^{t} & -3 e^{4 t} & 3 t e^{4 t} \\ 6 e^{t} & 0 & 0\end{array}\right] C
D) x(t) =[ete4t(t+16) e4t6et3e4t3te4t3et00] \mathbf{x}(t) =\left[\begin{array}{lll}e^{-t} & e^{-4 t} & \left(t+\frac{1}{6}\right) e^{-4 t} \\ 6 e^{-t} & 3 e^{-4 t} & 3 t e^{-4 t} \\ 3 e^{-t} & 0 & 0\end{array}\right] C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions