Solved

Consider the First-Order Homogeneous System of Linear Differential Equations

Question 27

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   What is the general solution of this system? A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right)  e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)  e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)  e^{t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)  e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)  e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)  e^{t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right) +C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)  e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)  e^{t}   D)    x(t) =C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)  e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)  e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)  e^{t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right)  e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right)  e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)
What is the general solution of this system?


A) x(t) =C1(124) e2t+C2(111) et+C3(111) et \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-1 \\ 2 \\ -4\end{array}\right) e^{2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
B) x(t) =C1(124) e2t+C2(111) et+C3(111) et \mathbf{x}(t) =C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
C) x(t) =C1(111) +C2(111) et+C3(111) et \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ 1 \\ -1\end{array}\right) +C_{2}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
D) x(t) =C1(124) e2t+C2(211) et+C3(111) et x(t) =C_{1}\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) e^{t}
E) x(t) =C1(124) e2t+C2(111) et+C3(111) \mathbf{x}(t) =C_{1}\left(\begin{array}{l}1 \\ -2 \\ 4\end{array}\right) e^{-2 t}+C_{2}\left(\begin{array}{l}1 \\ -1 \\ 1\end{array}\right) e^{-t}+C_{3}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions