Solved

Consider the First-Order Homogeneous System of Linear Differential Equations
ψ(t)=(7e1te6t8e1t0) \psi(t)=\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)

Question 33

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations    Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)    B)    \Psi(t) =\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)
Which of these is the fundamental matrix  Consider the first-order homogeneous system of linear differential equations    Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)    B)    \Psi(t) =\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)  (t) for this system?


A) ψ(t) =(7e1te6t8e1t0) \psi(t) =\left(\begin{array}{l}-7 e^{-1 t} e^{-6 t} \\ -8 e^{-1 t} 0\end{array}\right)
B) Ψ(t) =(7e1/08e1te6t) \Psi(t) =\left(\begin{array}{l}-7 e^{-1 /} 0 \\ -8 e^{-1 t} e^{-6 t}\end{array}\right)
C) ψ(t) =(7e1te6t8e1t0) \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & e^{-6 t} \\ -8 e^{1 t} & 0\end{array}\right)
D) ψ(t) =(7e1t08e1te6t) \psi(t) =\left(\begin{array}{ll}7 e^{1 t} & 0 \\ -8 e^{1 t} & e^{-6 t}\end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions