Solved

Consider the First-Order Homogeneous System of Linear Differential Equations
ψ(t)=(e4tsin(7t)e4tcos(7t)e4tcos(7t)e4tsin(7t)) \psi(t)=\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t)\end{array}\right)

Question 10

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations    Which of these is the fundamental matrix   (t)  for this system? A)   \psi(t) =\left(\begin{array}{ll}-e^{-4 t} \sin (7 t)  & e^{-4 t} \cos (7 t)  \\ e^{-4 t} \cos (7 t)  & -e^{-4 t} \sin (7 t) \end{array}\right)    B)    \psi(t) =\left\{\begin{array}{ll}e^{4 t} \sin (7 t)  & -e^{4 t} \cos (7 t)  \\ -e^{4 t} \cos (7 t)  & e^{4 t} \sin (7 t) \end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}e^{4 t} \sin (7 t)  & -e^{4 t} \cos (7 t)  \\ e^{4 t} \cos (7 t)  & e^{4 t} \sin (7 t) \end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}e^{-4 t} \sin (7 t)  & -e^{-4 t} \cos (7 t)  \\ e^{-4 t} \cos (7 t)  & e^{-4 t} \sin (7 t) \end{array}\right)
Which of these is the fundamental matrix  Consider the first-order homogeneous system of linear differential equations    Which of these is the fundamental matrix   (t)  for this system? A)   \psi(t) =\left(\begin{array}{ll}-e^{-4 t} \sin (7 t)  & e^{-4 t} \cos (7 t)  \\ e^{-4 t} \cos (7 t)  & -e^{-4 t} \sin (7 t) \end{array}\right)    B)    \psi(t) =\left\{\begin{array}{ll}e^{4 t} \sin (7 t)  & -e^{4 t} \cos (7 t)  \\ -e^{4 t} \cos (7 t)  & e^{4 t} \sin (7 t) \end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}e^{4 t} \sin (7 t)  & -e^{4 t} \cos (7 t)  \\ e^{4 t} \cos (7 t)  & e^{4 t} \sin (7 t) \end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}e^{-4 t} \sin (7 t)  & -e^{-4 t} \cos (7 t)  \\ e^{-4 t} \cos (7 t)  & e^{-4 t} \sin (7 t) \end{array}\right)  (t) for this system?


A) ψ(t) =(e4tsin(7t) e4tcos(7t) e4tcos(7t) e4tsin(7t) ) \psi(t) =\left(\begin{array}{ll}-e^{-4 t} \sin (7 t) & e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & -e^{-4 t} \sin (7 t) \end{array}\right)
B) ψ(t) ={e4tsin(7t) e4tcos(7t) e4tcos(7t) e4tsin(7t) ) \psi(t) =\left\{\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ -e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t) \end{array}\right)
C) ψ(t) =(e4tsin(7t) e4tcos(7t) e4tcos(7t) e4tsin(7t) ) \psi(t) =\left(\begin{array}{ll}e^{4 t} \sin (7 t) & -e^{4 t} \cos (7 t) \\ e^{4 t} \cos (7 t) & e^{4 t} \sin (7 t) \end{array}\right)
D) ψ(t) =(e4tsin(7t) e4tcos(7t) e4tcos(7t) e4tsin(7t) ) \psi(t) =\left(\begin{array}{ll}e^{-4 t} \sin (7 t) & -e^{-4 t} \cos (7 t) \\ e^{-4 t} \cos (7 t) & e^{-4 t} \sin (7 t) \end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions