Solved

Consider the First-Order Homogeneous System of Linear Differential Equations

Question 5

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations    What is the general solution of this system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)    B)    \mathbf{x}(t) =C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right) +C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    C)   \mathbf{x}(t) =C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    D)    \mathbf{x}(t) =C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)
What is the general solution of this system? Here,  Consider the first-order homogeneous system of linear differential equations    What is the general solution of this system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)    B)    \mathbf{x}(t) =C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right) +C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    C)   \mathbf{x}(t) =C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    D)    \mathbf{x}(t) =C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)  and  Consider the first-order homogeneous system of linear differential equations    What is the general solution of this system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)    B)    \mathbf{x}(t) =C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right) +C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    C)   \mathbf{x}(t) =C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t)  \\ \cos (2 t) \end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t)  \\ \sin (2 t) \end{array}\right)    D)    \mathbf{x}(t) =C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t)  \\ \cos (-8 t) \end{array}\right) +C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t)  \\ \sin (-8 t) \end{array}\right)  are arbitrary real constants.


A) x(t) =C1e2t[sin(8t) cos(8t) ) +C2e2t[cos(8t) sin(8t) ) \mathbf{x}(t) =C_{1} e^{-2 t}\left[\begin{array}{l}\sin (-8 t) \\ \cos (-8 t) \end{array}\right) +C_{2} e^{-2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t) \end{array}\right)
B) x(t) =C1e8t(sin(2t) cos(2t) ) +C2e8t(cos(2t) sin(2t) ) \mathbf{x}(t) =C_{1} e^{8 t}\left(\begin{array}{l}\sin (2 t) \\ \cos (2 t) \end{array}\right) +C_{2} e^{8 t}\left(\begin{array}{l}-\cos (2 t) \\ \sin (2 t) \end{array}\right)
C) x(t) =C1e8t[sin(2t) cos(2t) ]+C2e8t[cos(2t) sin(2t) ) \mathbf{x}(t) =C_{1} e^{-8 t}\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t) \end{array}\right]+C_{2} e^{-8 t}\left[\begin{array}{l}-\cos (2 t) \\ \sin (2 t) \end{array}\right)
D) x(t) =C1e2t(sin(8t) cos(8t) ) +C2e2t[cos(8t) sin(8t) ) \mathbf{x}(t) =C_{1} e^{2 t}\left(\begin{array}{l}\sin (-8 t) \\ \cos (-8 t) \end{array}\right) +C_{2} e^{2 t}\left[\begin{array}{l}-\cos (-8 t) \\ \sin (-8 t) \end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions