Solved

Consider the First-Order Homogeneous System of Linear Differential Equations
ψ(t)=(0(t+8)e3te3te3t) \psi(t)=\left(\begin{array}{ll}0 & (t+8) e^{-3 t} \\ e^{-3 t} & e^{-3 t}\end{array}\right)

Question 53

Multiple Choice

Consider the first-order homogeneous system of linear differential equations
 Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left(\begin{array}{ll}0 & (t+8)  e^{-3 t} \\ e^{-3 t} & e^{-3 t}\end{array}\right)    B)    \Psi(t) =\left(\begin{array}{ll}e^{3 t} & 8(t+8)  e^{3 t} \\ 0 & e^{3 t}\end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}e^{-3 t}(t+8)  e^{-3 t} \\ 0 & e^{-3 t}\end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}e^{-3 t} & e^{-3 t} \\ 0 & (t+8)  e^{-3 t}\end{array}\right)
Which of these is the fundamental matrix  Consider the first-order homogeneous system of linear differential equations   Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left(\begin{array}{ll}0 & (t+8)  e^{-3 t} \\ e^{-3 t} & e^{-3 t}\end{array}\right)    B)    \Psi(t) =\left(\begin{array}{ll}e^{3 t} & 8(t+8)  e^{3 t} \\ 0 & e^{3 t}\end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}e^{-3 t}(t+8)  e^{-3 t} \\ 0 & e^{-3 t}\end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}e^{-3 t} & e^{-3 t} \\ 0 & (t+8)  e^{-3 t}\end{array}\right)  (t) for this system?


A) ψ(t) =(0(t+8) e3te3te3t) \psi(t) =\left(\begin{array}{ll}0 & (t+8) e^{-3 t} \\ e^{-3 t} & e^{-3 t}\end{array}\right)
B) Ψ(t) =(e3t8(t+8) e3t0e3t) \Psi(t) =\left(\begin{array}{ll}e^{3 t} & 8(t+8) e^{3 t} \\ 0 & e^{3 t}\end{array}\right)
C) ψ(t) =(e3t(t+8) e3t0e3t) \psi(t) =\left(\begin{array}{ll}e^{-3 t}(t+8) e^{-3 t} \\ 0 & e^{-3 t}\end{array}\right)
D) ψ(t) =(e3te3t0(t+8) e3t) \psi(t) =\left(\begin{array}{ll}e^{-3 t} & e^{-3 t} \\ 0 & (t+8) e^{-3 t}\end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions