Solved

Consider the First-Order Nonhomogeneous Initial Value Problem

Which of These

Question 52

Multiple Choice

Consider the first-order nonhomogeneous initial value problem
 Consider the first-order nonhomogeneous initial value problem   Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left[\begin{array}{ll}-\sin (3 t)  & \cos (3 t)  \\ \cos (3 t)  & -\sin (3 t) \end{array}\right)    B)    \Psi(t) =\left(\begin{array}{ll}\sin (3 t)  & -\cos (3 t)  \\ -\cos (3 t)  & \sin (3 t) \end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}\sin (3 t)  & \cos (3 t)  \\ \cos (3 t)  & \sin (3 t) \end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}\sin (3 t)  & -\cos (3 t)  \\ \cos (3 t)  & \sin (3 t) \end{array}\right)
Which of these is the fundamental matrix  Consider the first-order nonhomogeneous initial value problem   Which of these is the fundamental matrix   (t)  for this system? A)    \psi(t) =\left[\begin{array}{ll}-\sin (3 t)  & \cos (3 t)  \\ \cos (3 t)  & -\sin (3 t) \end{array}\right)    B)    \Psi(t) =\left(\begin{array}{ll}\sin (3 t)  & -\cos (3 t)  \\ -\cos (3 t)  & \sin (3 t) \end{array}\right)    C)    \psi(t) =\left(\begin{array}{ll}\sin (3 t)  & \cos (3 t)  \\ \cos (3 t)  & \sin (3 t) \end{array}\right)    D)    \psi(t) =\left(\begin{array}{ll}\sin (3 t)  & -\cos (3 t)  \\ \cos (3 t)  & \sin (3 t) \end{array}\right)  (t) for this system?


A) ψ(t) =[sin(3t) cos(3t) cos(3t) sin(3t) ) \psi(t) =\left[\begin{array}{ll}-\sin (3 t) & \cos (3 t) \\ \cos (3 t) & -\sin (3 t) \end{array}\right)
B) Ψ(t) =(sin(3t) cos(3t) cos(3t) sin(3t) ) \Psi(t) =\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ -\cos (3 t) & \sin (3 t) \end{array}\right)
C) ψ(t) =(sin(3t) cos(3t) cos(3t) sin(3t) ) \psi(t) =\left(\begin{array}{ll}\sin (3 t) & \cos (3 t) \\ \cos (3 t) & \sin (3 t) \end{array}\right)
D) ψ(t) =(sin(3t) cos(3t) cos(3t) sin(3t) ) \psi(t) =\left(\begin{array}{ll}\sin (3 t) & -\cos (3 t) \\ \cos (3 t) & \sin (3 t) \end{array}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions