Solved

Consider the First-Order Nonhomogeneous Initial Value Problem

Given a Fundamental

Question 56

Multiple Choice

Consider the first-order nonhomogeneous initial value problem
 Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \quad \mathbf{x}(t) =\psi(t)  \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   B)    \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   C)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   D)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2)  \int_{2.2}^{t} \psi^{-1}(s) =-10
Given a fundamental matrix  Consider the first-order nonhomogeneous initial value problem   Given a fundamental matrix   (t)  for the system, what is the solution of this initial value problem? A)    \quad \mathbf{x}(t) =\psi(t)  \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   B)    \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   C)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t)  \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s   D)    \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2)  \int_{2.2}^{t} \psi^{-1}(s) =-10 (t) for the system, what is the solution of this initial value problem?


A) x(t) =ψ(t) ψ1(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \quad \mathbf{x}(t) =\psi(t) \psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
B) x(t) =ψ(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \mathbf{x}(t) =\psi(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
C) x(t) =ψ1(2.2) (24) +ψ(t) 2.2tψ1(s) 3s2+6s710ds \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(t) \int_{2.2}^{t} \psi^{-1}(s) { }_{3 s^{2}+6 s^{7}}^{-10} d s
D) x(t) =ψ1(2.2) (24) +ψ(2.2) 2.2tψ1(s) =10 \mathbf{x}(t) =\psi^{-1}(2.2) \left(\begin{array}{l}2 \\ 4\end{array}\right) +\psi(2.2) \int_{2.2}^{t} \psi^{-1}(s) =-10

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions