Solved

Suppose That ABCA B C Is a Right Triangle With C=90\angle C = 90 ^ { \circ }

Question 25

Multiple Choice

Suppose that ABCA B C is a right triangle with C=90\angle C = 90 ^ { \circ } . If AC=12A C = 12 and BC=6B C = 6 , find the quantities. cosA,sinA,tanA,secB,cscB,cotB\cos A , \sin A , \tan A , \sec B , \csc B , \cot B .


A) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = 5 , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=15\csc B = \frac { 1 } { 5 } , cotB=12\cot B = \frac { 1 } { 2 }
B) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=2\tan A = 2 , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
C) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=52\sec B = \frac { \sqrt { 5 } } { 2 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=5\csc B = \sqrt { 5 } , cotB=2\cot B = 2
D) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=12\cot B = \frac { 1 } { 2 }
E) cosA=255\cos A = \frac { 2 \sqrt { 5 } } { 5 } , secB=5\sec B = \sqrt { 5 } , tanA=12\tan A = \frac { 1 } { 2 } , sinA=55\sin A = \frac { \sqrt { 5 } } { 5 } , cscB=52\csc B = \frac { \sqrt { 5 } } { 2 } , cotB=2\cot B = 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions