Solved

Use the Definitions to Evaluate the Six Trigonometric Functions Of \theta

Question 5

Multiple Choice

Use the definitions to evaluate the six trigonometric functions of θ\theta . In cases in which a radical occurs in a denominator, rationalize the denominator.  Use the definitions to evaluate the six trigonometric functions of  \theta  . In cases in which a radical occurs in a denominator, rationalize the denominator.   A)   \sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5   \cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }  B)   \sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2   \cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }  C)   \sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 }   \cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }  D)   \sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 }   \cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }  E)   \sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2   \cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }


A) sinθ=52,tanθ=552,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 2 } , \tan \theta = \frac { 5 \sqrt { 5 } } { 2 } , \csc \theta = 5 cosθ=5,cotθ=52,secθ=15\cos \theta = \sqrt { 5 } , \cot \theta = \frac { \sqrt { 5 } } { 2 } , \sec \theta = \frac { 1 } { 5 }
B) sinθ=115,tanθ=2117,cscθ=2\sin \theta = \frac { \sqrt { 11 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 11 } } { 7 } , \csc \theta = 2 cosθ=11,cotθ=112,secθ=17\cos \theta = \sqrt { 11 } , \cot \theta = \frac { \sqrt { 11 } } { 2 } , \sec \theta = \frac { 1 } { 7 }
C) sinθ=455,tanθ=4,cscθ=54\sin \theta = \frac { 4 \sqrt { 5 } } { 5 } , \tan \theta = 4 , \csc \theta = \frac { \sqrt { 5 } } { 4 } cosθ=52,cotθ=14,secθ=5\cos \theta = \frac { \sqrt { 5 } } { 2 } , \cot \theta = \frac { 1 } { 4 } , \sec \theta = \sqrt { 5 }
D) sinθ=55,tanθ=12,cscθ=5\sin \theta = \frac { \sqrt { 5 } } { 5 } , \tan \theta = \frac { 1 } { 2 } , \csc \theta = \sqrt { 5 } cosθ=255,cotθ=2,secθ=52\cos \theta = \frac { 2 \sqrt { 5 } } { 5 } , \cot \theta = 2 , \sec \theta = \frac { \sqrt { 5 } } { 2 }
E) sinθ=75,tanθ=275,cscθ=2\sin \theta = \frac { \sqrt { 7 } } { 5 } , \tan \theta = \frac { 2 \sqrt { 7 } } { 5 } , \csc \theta = 2 cosθ=7,cotθ=72,secθ=12\cos \theta = \sqrt { 7 } , \cot \theta = \frac { \sqrt { 7 } } { 2 } , \sec \theta = \frac { 1 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions