Solved

Use the Following Information to Express the Remaining Five Trigonometric tt

Question 6

Multiple Choice

Use the following information to express the remaining five trigonometric values as functions of tt . Assume that tt is positive. Rationalize any denominators that contain radicals. cosθ=3t4,90<θ<180\cos \theta = - \frac { 3 t } { 4 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }


A) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
B) tanθ=3t169t2169t2,secθ=43t,sinθ=169t24,cotθ=169t23t,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sec \theta = - \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
C) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
D) tanθ=169t23t,secθ=43t,sinθ=169t24,cotθ=3t169t2169t2,cscθ=4169t2169t2.\begin{array} { l } \tan \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 } { 3 t } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } .\end{array}
E) tanθ=169t23t,secθ=4169t2169t2,sinθ=169t24,cotθ=3t169t2169t2,cscθ=43t.\begin{array} { l } \tan \theta = - \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 3 t } , \quad \sec \theta = \frac { 4 \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \sin \theta = \frac { \sqrt { 16 - 9 t ^ { 2 } } } { 4 } , \\\cot \theta = - \frac { 3 t \sqrt { 16 - 9 t ^ { 2 } } } { 16 - 9 t ^ { 2 } } , \quad \csc \theta = - \frac { 4 } { 3 t } .\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions