Solved

Use the Following Information to Determine the Remaining Five Trigonometric cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }

Question 1

Multiple Choice

Use the following information to determine the remaining five trigonometric values. Rationalize any denominators that contain radicals. cosθ=47,90<θ<180\cos \theta = - \frac { 4 } { 7 } , 90 ^ { \circ } < \theta < 180 ^ { \circ }


A) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = - \frac { 7 } { 4 }
B) sinθ=337,tanθ=334,cscθ=73333,cotθ=43333,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 } { 4 }
C) sinθ=337,tanθ=334,cscθ=74,cotθ=43333,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = - \frac { \sqrt { 33 } } { 4 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = - \frac { 4 \sqrt { 33 } } { 33 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
D) sinθ=337,tanθ=43333,cscθ=74,cotθ=334,secθ=73333\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = - \frac { 7 } { 4 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = \frac { 7 \sqrt { 33 } } { 33 }
E) sinθ=337,tanθ=43333,cscθ=73333,cotθ=334,secθ=74\sin \theta = \frac { \sqrt { 33 } } { 7 } , \tan \theta = \frac { 4 \sqrt { 33 } } { 33 } , \csc \theta = \frac { 7 \sqrt { 33 } } { 33 } , \cot \theta = \frac { \sqrt { 33 } } { 4 } , \sec \theta = - \frac { 7 } { 4 }

Correct Answer:

verifed

Verified

Related Questions