Solved

Graph the Hyperbola 3y27x2=13 y ^ { 2 } - 7 x ^ { 2 } = 1

Question 3

Multiple Choice

Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes. 3y27x2=13 y ^ { 2 } - 7 x ^ { 2 } = 1


A)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1  A)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)     vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)   ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)   ;  Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ;  Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ;   length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . vertices: (±77,0) \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0) \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .
B)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1  A)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)     vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)   ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)   ;  Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ;  Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ;   length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . vertices: (±36,0) \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right) ;
Foci: (±233,0) \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right) ;
Length of transverse axis: 33\frac { \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 22 ;
Eccentricity: 22 ;
Asymptotes: y=±33xy = \pm \frac { \sqrt { 3 } } { 3 } x .
C)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1  A)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)     vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)   ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)   ;  Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ;  Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ;   length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  .
vertices: (0,±33) \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021) \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
Length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
D)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1  A)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)     vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)   ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)   ;  Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ;  Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ;   length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . vertices: (±77,0) \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right) ;
Foci: (±21021,0) \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right) ;
Length of transverse axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Length of conjugate axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±217xy = \pm \frac { \sqrt { 21 } } { 7 } x .
E)  Graph the hyperbola. Specify the following: vertices, foci, lengths of transverse and conjugate axes, eccentricity, and equations of the asymptotes.  3 y ^ { 2 } - 7 x ^ { 2 } = 1  A)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . B)     vertices:  \left( \pm \frac { \sqrt { 3 } } { 6 } , 0 \right)   ; Foci:  \left( \pm \frac { 2 \sqrt { 3 } } { 3 } , 0 \right)   ;  Length of transverse axis:  \frac { \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  2  ; Eccentricity:  2  ; Asymptotes:  y = \pm \frac { \sqrt { 3 } } { 3 } x  . C)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ;  Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . D)    vertices:  \left( \pm \frac { \sqrt { 7 } } { 7 } , 0 \right)   ; Foci:  \left( \pm \frac { \sqrt { 210 } } { 21 } , 0 \right)   ; Length of transverse axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 7 } x  . E)     vertices:  \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right)   ; Foci:  \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right)   ;   length of transverse axis:  \frac { 2 \sqrt { 3 } } { 3 }  ; Length of conjugate axis:  \frac { 2 \sqrt { 7 } } { 7 }  ; Eccentricity:  \frac { \sqrt { 70 } } { 7 }  ; Asymptotes:  y = \pm \frac { \sqrt { 21 } } { 3 } x  . vertices: (0,±33) \left( 0 , \pm \frac { \sqrt { 3 } } { 3 } \right) ;
Foci: (0,±21021) \left( 0 , \pm \frac { \sqrt { 210 } } { 21 } \right) ;
length of transverse axis: 233\frac { 2 \sqrt { 3 } } { 3 } ;
Length of conjugate axis: 277\frac { 2 \sqrt { 7 } } { 7 } ;
Eccentricity: 707\frac { \sqrt { 70 } } { 7 } ;
Asymptotes: y=±213xy = \pm \frac { \sqrt { 21 } } { 3 } x .

Correct Answer:

verifed

Verified

Related Questions