Solved

Graph the Ellipse (x2)222+(y+5)232=1\frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1

Question 1

Multiple Choice

Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity. (x2) 222+(y+5) 232=1\frac { ( x - 2 ) ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 ) ^ { 2 } } { 3 ^ { 2 } } = 1


A) center: (- 2, 5) ;
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5) ( - 2,5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 )  ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 )  ^ { 2 } } { 3 ^ { 2 } } = 1  A)  center: (- 2, 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
B) center: (1, - 2.5) ;
Length of major axis: 3;
Length of minor axis: 2;
Foci: (1±52,2.5) \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 )  ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 )  ^ { 2 } } { 3 ^ { 2 } } = 1  A)  center: (- 2, 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
C) center: (2, - 5) ;
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2,5±5) ( 2 , - 5 \pm \sqrt { 5 } ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 } θ\theta
D) center: (1, - 2.5) ;
Length of major axis: 3;
Length of minor axis: 2;
Foci: (2,1.25±52) \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 )  ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 )  ^ { 2 } } { 3 ^ { 2 } } = 1  A)  center: (- 2, 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }
E) center: (2, - 5) ;
Length of major axis: 6;
Length of minor axis: 4;
Foci: (2±5,5) ( 2 \pm \sqrt { 5 } , - 5 ) ;
Eccentricity: 53\frac { \sqrt { 5 } } { 3 }  Graph the ellipse. Specify the lengths of the major and minor axes, the foci, the center and the eccentricity.  \frac { ( x - 2 )  ^ { 2 } } { 2 ^ { 2 } } + \frac { ( y + 5 )  ^ { 2 } } { 3 ^ { 2 } } = 1  A)  center: (- 2, 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( - 2,5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    B)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 1 \pm \frac { \sqrt { 5 } } { 2 } , - 2.5 \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    C)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 , - 5 \pm \sqrt { 5 } )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }   \theta  D)  center: (1, - 2.5) ; Length of major axis: 3; Length of minor axis: 2; Foci:  \left( 2 , - 1.25 \pm \frac { \sqrt { 5 } } { 2 } \right)   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }    E)  center: (2, - 5) ; Length of major axis: 6; Length of minor axis: 4; Foci:  ( 2 \pm \sqrt { 5 } , - 5 )   ; Eccentricity:  \frac { \sqrt { 5 } } { 3 }

Correct Answer:

verifed

Verified

Related Questions