Solved

A Helicopter Rises Straight Up in the Air So That v(t)=t3/2+12t1/2+1\mathrm { v } ( \mathrm { t } ) = \mathrm { t } ^ { 3 / 2 } + \frac { 1 } { 2 } \mathrm { t } ^ { 1 / 2 } + 1

Question 135

Multiple Choice

A helicopter rises straight up in the air so that its velocity t seconds after take-off is v(t) =t3/2+12t1/2+1\mathrm { v } ( \mathrm { t } ) = \mathrm { t } ^ { 3 / 2 } + \frac { 1 } { 2 } \mathrm { t } ^ { 1 / 2 } + 1 feet per second. If the landing pad is 100 feet above the ground, which of the following gives the height of the helicopter at time t ?


A) h(t) = 53\frac { 5 } { 3 } t5/2t ^ { 5 / 2 } + 34\frac { 3 } { 4 } t3/2t ^ { 3 / 2 } + t - 100
B) h(t) = 25\frac { 2 } { 5 } t5/2t ^ { 5 / 2 } + 13\frac { 1 } { 3 } t3/2t ^ { 3 / 2 } + t + 100
C) h(t) = 32\frac { 3 } { 2 } t1/2t 1 / 2 + 14\frac { 1 } { 4 } t1/2t ^ { - 1 / 2 } + 100
D) h(t) = 23\frac { 2 } { 3 } t5/2t ^ { 5 / 2 } + 14\frac { 1 } { 4 } t3/2t ^ { 3 / 2 } + t + C
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions