Solved

Select the Graph of the Polar Equation Using Symmetry,zeros,maximum R-Values,and r=4sin3θr = 4 \sin 3 \theta

Question 1

Multiple Choice

Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​ r=4sin3θr = 4 \sin 3 \theta


A) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
B) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
C) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
D) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​
E) Symmetric with respect to θ=π2\theta = \frac { \pi } { 2 } r=4 when θ=π6,π2,5π6,11π6r=0 when θ=0,π3,2π3\begin{array} { c } | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 }\end{array} Select the graph of the polar equation using symmetry,zeros,maximum r-values,and any other additional points.​  r = 4 \sin 3 \theta  ​ A) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   B) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   C) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   D) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​   E) Symmetric with respect to  \theta = \frac { \pi } { 2 }   \begin{array} { c }  | r | = 4 \text { when } \theta = \frac { \pi } { 6 } , \frac { \pi } { 2 } , \frac { 5 \pi } { 6 } , \frac { 11 \pi } { 6 } \\ r = 0 \text { when } \theta = 0 , \frac { \pi } { 3 } , \frac { 2 \pi } { 3 } \end{array}  ​

Correct Answer:

verifed

Verified

Related Questions