Solved

Using Power Series Methods, the Solution Of xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0

Question 36

Multiple Choice

Using power series methods, the solution of xyxy+y=0x y ^ { \prime \prime } - x y ^ { \prime } + y = 0 is


A) y=c0x+c1[xlnx1+n=2xn/n!]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / n ! \right]
B) y=c0x+c1[xlnx1+n=1xn/(n!(n+1) ) ]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n + 1 ) ) \right]
C) y=c0x+c1[xlnx+n=2xn/(n!(n1) ) ]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
D) y=c0x+c1[xlnx+n=1xn/(n!(n1) ) ]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x + \sum _ { n = 1 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]
E) y=c0x+c1[xlnx1+n=2xn/(n!(n1) ) ]y = c _ { 0 } x + c _ { 1 } \left[ x \ln x - 1 + \sum _ { n = 2 } ^ { \infty } x ^ { n } / ( n ! ( n - 1 ) ) \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions