Solved

The Solution Of y4y+20y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 20 y = 0

Question 38

Multiple Choice

The solution of y4y+20y=0y ^ { \prime \prime } - 4 y ^ { \prime } + 20 y = 0 is


A) y=c1e2xcos(4x) +c2e2xsin(4x) y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { - 2 x } \sin ( 4 x )
B) y=c1e2xcos(4x) +c2e2xsin(4x) y = c _ { 1 } e ^ { - 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
C) y=c1e2xcos(4x) +c2e2xsin(4x) y = c _ { 1 } e ^ { 2 x } \cos ( 4 x ) + c _ { 2 } e ^ { 2 x } \sin ( 4 x )
D) y=c1e2x+c2e4xy = c _ { 1 } e ^ { 2 x } + c _ { 2 } e ^ { 4 x }
E) y=c1cos(4x) +c2sin(4x) y = c _ { 1 } \cos ( 4 x ) + c _ { 2 } \sin ( 4 x )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions