Solved

The Solutions of the Eigenvalue Problem and the Other Problem λ=nπ,X=cos(nπx),Y=sinh(nπy),n=1,2,3,\lambda = n \pi , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots

Question 40

Multiple Choice

The solutions of the eigenvalue problem and the other problem from the previous problem are


A) λ=nπ,X=cos(nπx) ,Y=sinh(nπy) ,n=1,2,3,\lambda = n \pi , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
B) λ=nπ,X=sin(nπx) ,Y=sinh(nπy) ,n=1,2,3,\lambda = n \pi , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
C) λ=n2π2,X=cos(nπx) ,Y=sinh(nπy) ,n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
D) λ=n2π2,X=sin(nπx) ,Y=sinh(nπy) ,n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , X = \sin ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 1,2,3 , \ldots
E) λ=n2π2,X=cos(nπx) ,Y=sinh(nπy) ,n=0,1,2,,(Y=y if n=0) \lambda = n ^ { 2 } \pi ^ { 2 } , X = \cos ( n \pi x ) , Y = \sinh ( n \pi y ) , n = 0,1,2 , \ldots , ( Y = y \text { if } n = 0 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions