Solved

Consider Laplace's Equation on a Rectangle 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0

Question 10

Multiple Choice

Consider Laplace's equation on a rectangle, 2ux2+2uy2=0\frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial y ^ { 2 } } = 0 with boundary conditions ux(0,y) =0,ux(1,y) =0,u(x,0) =0,u(x,2) =f(x) u _ { x } ( 0 , y ) = 0 , u _ { x } ( 1 , y ) = 0 , u ( x , 0 ) = 0 , u ( x , 2 ) = f ( x ) . When the variables are separated using u(x,y) =X(x) Y(y) u ( x , y ) = X ( x ) Y ( y ) , the resulting problems for XX and YY are


A) X+λX=0,X(0) =0,X(1) =0,YλY=0,Y(0) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0
B) X+λX=0,X(0) =0,X(1) =0,Y+λY=0,Y(0) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0
C) X+λX=0,X(0) =0,X(1) =0,YλY=0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , X ^ { \prime } ( 1 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 2 ) = 0
D) X+λX=0,X(0) =0,Y+λY=0,Y(0) =0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } + \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0
E) X+λX=0,X(0) =0,YλY=0,Y(0) =0,Y(2) =0X ^ { \prime \prime } + \lambda X = 0 , X ^ { \prime } ( 0 ) = 0 , Y ^ { \prime \prime } - \lambda Y = 0 , Y ( 0 ) = 0 , Y ( 2 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions