Solved

Consider the Problem With Boundary Conditions u(r,0)=0u ( r , 0 ) = 0

Question 5

Multiple Choice

Consider the problem 2ur2+1rur+1r22uθ2=0\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { 1 } { r ^ { 2 } } \frac { \partial ^ { 2 } u } { \partial \theta ^ { 2 } } = 0 with boundary conditions u(r,0) =0u ( r , 0 ) = 0 , u(r,π) =0,u(1,θ) =f(θ) u ( r , \pi ) = 0 , u ( 1 , \theta ) = f ( \theta ) . Separate variables using u(r,θ) =R(r) Θ(θ) u ( r , \theta ) = R ( r ) \Theta ( \theta ) . The resulting problems for R and ΘR \text { and } \Theta are


A) r2R+rR+λR=0,R(0) =0,Θ+λΘ=0,Θ(0) =0,Θ(π) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
B) r2R+rR+λR=0,Θ+λΘ=0,Θ(0) =0,Θ(π) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } + \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
C) r2R+rRλR=0,R(0) =0,Θ+λΘ=0,Θ(0) =0,Θ(π) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
D) r2R+rRλR=0,R(0)  is bounded, Θ+λΘ=0,Θ(0) =0,Θ(π) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , R ( 0 ) \text { is bounded, } \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0
E) r2R+rRλR=0,Θ+λΘ=0,Θ(0) =0,Θ(π) =0r ^ { 2 } R ^ { \prime \prime } + r R ^ { \prime } - \lambda R = 0 , \Theta ^ { \prime \prime } + \lambda \Theta = 0 , \Theta ( 0 ) = 0 , \Theta ( \pi ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions