Solved

The Complex Form of the Fourier Integral of a Function f(t)eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t} d t

Question 31

Multiple Choice

The complex form of the Fourier integral of a function f is


A) f(t) eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t} d t
B) (f(t) eiαtdt) eiααdα/(2π) \int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { i \alpha t } d t \right) e ^ { - i \alpha \alpha } d \alpha / ( 2 \pi )
C) f(t) eiαtdt\int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t
D) (f(t) eiαtdt) eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { - i \alpha t } d t \right) e ^ { i \alpha x } d \alpha / \pi
E) (f(t) eαtdt) eiαxdα/π\int _ { - \infty } ^ { \infty } \left( \int _ { - \infty } ^ { \infty } f ( t ) e ^ { \alpha t } d t \right) e ^ { - i \alpha x } d \alpha / \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions