Solved

In the Previous Three Problems, the Solution For u(x,t)u ( x , t )

Question 34

Multiple Choice

In the previous three problems, the solution for u(x,t) u ( x , t ) is


A) [eiαxekat/(1+α2) ]dα/(2π) \int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { k at } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )
B) [eiαxekα2t/(1+α2) ]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
C) [eiααekαt/(1+α2) ]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
D) [eiαxekαt/(1+α2) ]dα/π\int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha x } e ^ { - k \alpha t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / \pi
E) [eiααekα2t/(1+α2) ]dα/(2π) \int _ { - \infty } ^ { \infty } \left[ e ^ { - i \alpha \alpha } e ^ { k \alpha ^ { 2 } t } / \left( 1 + \alpha ^ { 2 } \right) \right] d \alpha / ( 2 \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions