Solved

Consider the Problem of Finding the Temperature in a Semi-Infinite u0u _ { 0 }

Question 36

Multiple Choice

Consider the problem of finding the temperature in a semi-infinite rod with zero initial temperature and a fixed constant temperature, u0u _ { 0 } , at x=0x = 0 . The mathematical model for this problem is


A) k2ux2=ut,u(x,0) =0,u(0,t) =u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
B) k2ux2=2ut2,u(x,0) =0,u(0,t) =u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
C) k2ux2+ut=0,u(x,0) =0,u(0,t) =u0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = 0 , u ( 0 , t ) = u _ { 0 }
D) k2ux2+2ut2=0,u(x,0) =u0,u(0,t) =0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0
E) k2ux2+ut=0,u(x,0) =u0,u(0,t) =0k \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( x , 0 ) = u _ { 0 } , u ( 0 , t ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions