Solved

In the Previous Problem, the Solution of the Eigenvalue Problem λ=nπ,T=ancos(nπi)+bnsin(nπt)\lambda = n \pi , T = a _ { n } \cos ( n \pi i ) + b _ { n } \sin ( n \pi t )

Question 19

Multiple Choice

In the previous problem, the solution of the eigenvalue problem is


A) λ=nπ,T=ancos(nπi) +bnsin(nπt) \lambda = n \pi , T = a _ { n } \cos ( n \pi i ) + b _ { n } \sin ( n \pi t )
B) λ=n2π2,T=ancos(nπt) +bnsin(nπt) \lambda = n ^ { 2 } \pi ^ { 2 } , T = a _ { n } \cos ( n \pi t ) + b _ { n } \sin ( n \pi t )
C) λ=zn2/4\lambda = z _ { n } ^ { 2 } / 4 , where J0(zn) =0,R=J0(znr/2) J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
D) λ=zn/2\lambda = z _ { n } / 2 , where J0(zn) =0,R=J0(znr/2) J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r / 2 \right)
E) λ=zn2\lambda = z _ { n } ^ { 2 } , where J0(zn) =0,R=J0(znr) J _ { 0 } \left( z _ { n } \right) = 0 , R = J _ { 0 } \left( z _ { n } r \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions