Solved

Consider the Steady-State Temperature Distribution in a Circular Cylinder of Radius

Question 33

Multiple Choice

Consider the steady-state temperature distribution in a circular cylinder of radius 2 and height 3, with zero temperature at r=2r = 2 and at z=3z = 3 and a temperature of 10 at z=0z = 0 . The mathematical model for this problem is


A) 2ur2+1rur2uz2=0,u(2,z) =0,u(r,3) =0,u(r,0) =10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
B) 2ur21rur2uz2=0,u(2,z) =0,u(r,3) =0,u(r,0) =10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r } \frac { \partial u } { \partial r } - \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
C) 2ur21r2ur+2uz2=0,u(2,z) =0,u(r,3) =0,u(r,0) =10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } - \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
D) 2ur2+1rur+2uz2=0,u(2,z) =0,u(r,3) =0,u(r,0) =10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10
E) 2ur2+1r2ur+2uz2=0,u(2,z) =0,u(r,3) =0,u(r,0) =10\frac { \partial ^ { 2 } u } { \partial r ^ { 2 } } + \frac { 1 } { r ^ { 2 } } \frac { \partial u } { \partial r } + \frac { \partial ^ { 2 } u } { \partial z ^ { 2 } } = 0 , u ( 2 , z ) = 0 , u ( r , 3 ) = 0 , u ( r , 0 ) = 10

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions