Solved

In the Three Previous Problems, the Product Solutions Are
A) un=rn(cnenθ+dnenθ),n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots

Question 31

Multiple Choice

In the three previous problems, the product solutions are


A) un=rn(cnenθ+dnenθ) ,n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 0,1,2 , \ldots
B) un=rn(cnenθ+dnenθ) ,n=1,2,3,u _ { n } = r ^ { n } \left( c _ { n } e ^ { n \theta } + d _ { n } e ^ { - n \theta } \right) , n = 1,2,3 , \ldots
C) un=rn(cncos(nθ) +dnsin(nθ) ) ,n=0,1,2,u _ { n } = r ^ { n } \left( c _ { n } \cos ( n \theta ) + d _ { n } \sin ( n \theta ) \right) , n = 0,1,2 , \ldots
D) un=rncos(nθ) ,n=0,1,2,u _ { n } = r ^ { n } \cos ( n \theta ) , n = 0,1,2 , \ldots
E) un=rnsin(nθ) ,n=1,2,3,u _ { n } = r ^ { n } \sin ( n \theta ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions