Solved

In the Previous Problem, After Separating Variables Using u(r,t)=R(r)T(t)u ( r , t ) = R ( r ) T ( t )

Question 30

Multiple Choice

In the previous problem, after separating variables using u(r,t) =R(r) T(t) u ( r , t ) = R ( r ) T ( t ) . the resulting problems are


A) rR+R+rλR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2) =0,TλT=0,T(0) =0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
B) rR+R+rλR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + r \lambda R = 0 , R ( 0 ) is bounded R(2) =0,T+λT=0,T(0) =0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
C) rR+RrλR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } - r \lambda R = 0 , R ( 0 ) is bounded R(2) =0,T+λT=0,T(0) =0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
D) rR+R+λR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2) =0,T+λT=0,T(0) =0R ( 2 ) = 0 , T ^ { \prime \prime } + \lambda T = 0 , T ^ { \prime } ( 0 ) = 0
E) rR+R+λR=0,R(0) r R ^ { \prime \prime } + R ^ { \prime } + \lambda R = 0 , R ( 0 ) is bounded R(2) =0,TλT=0,T(0) =0R ( 2 ) = 0 , T ^ { \prime \prime } - \lambda T = 0 , T ^ { \prime } ( 0 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions