Solved

In the Previous Problem, the Eigenfunction Expansion If xetx e ^ { t }

Question 14

Multiple Choice

In the previous problem, the eigenfunction expansion if xetx e ^ { t } is


A) etn1(1) n2Lcos(nπx/L) /(nπ) e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / ( n \pi )
B) etn1(1) n2Lsin(nπx/L) /(n2π2) e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \sin ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
C) etn1(1) n2Lcos(nπx/L) /(n2π2) e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n } 2 L \cos ( n \pi x / L ) / \left( n ^ { 2 } \pi ^ { 2 } \right)
D) etn1(1) n+12Lcos(nπx/L) /(nπ) e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \cos ( n \pi x / L ) / ( n \pi )
E) etn1(1) n+12Lsin(nπx/L) /(nπ) e ^ { t } \sum _ { n - 1 } ^ { \infty } ( - 1 ) ^ { n + 1 } 2 L \sin ( n \pi x / L ) / ( n \pi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions