Solved

In the Previous Three Problems, the Solution of the Original u(x,t)=n1cnsin(nπx/L)sinh(nπ(yH)/L)u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L )

Question 17

Multiple Choice

In the previous three problems, the solution of the original problem is


A) u(x,t) =n1cnsin(nπx/L) sinh(nπ(yH) /L) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cn=0Lf(x) cos(nπx/L) dx/sinh(nπH/L) c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )
B) u(x,t) =n1cnsin(nπx/L) sinh(nπ(yH) /L) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \sinh ( n \pi ( y - H ) / L ) , where cx=20Lf(x) sin(nπx/L) dx/(Lsinh(nπH/L) ) c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
C) u(x,t) =n1cnsin(nπx/L) cosh(nπ(yH) /L) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh ( n \pi ( y - H ) / L ) , where cn=20Lf(x) cos(nπx/L) dx/(Lsinh(nπH/L) ) c _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
D) u(x,t) =n1cnsin(nπx/L) cosh((nπ/L) 2(yH) ) u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( n \pi x / L ) \cosh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cx=20Lf(x) sin(nπx/L) dx/(Lsinh(nπH/L) ) c _ { x } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( n \pi x / L ) d x / ( L \sinh ( - n \pi H / L ) )
E) u(x,t) =n=0cncos(nπx/L) sinh((nπ/L) 2(yH) ) u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \cos ( n \pi x / L ) \sinh \left( ( n \pi / L ) ^ { 2 } ( y - H ) \right) , where cn=0Lf(x) cos(nπx/L) dx/sinh(nπH/L) c _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( n \pi x / L ) d x / \sinh ( - n \pi H / L )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions