Solved

In the Previous Three Problems, the Solution of the Original u(x,t)=n1cncos((n1/2)πx/L)e(n1/2)2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } }

Question 16

Multiple Choice

In the previous three problems, the solution of the original problem is


A) u(x,t) =n1cncos((n1/2) πx/L) e(n1/2) 2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x) cos((n1/2) πx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x / L
B) u(x,t) =n1cnsin((n1/2) πx/L) e(n1/2) 2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x) sin((n1/2) πx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
C) u(x,t) =n1cncos((n1/2) πx/L) e(n1/2) 2x2t/L2u ( x , t ) = \sum _ { n - 1 } ^ { \infty } c _ { n } \cos ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x) cos((n1/2) πx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \cos ( ( n - 1 / 2 ) \pi x / L ) d x
D) u(x,t) =n=0cnsin((n1/2) πx/L) e(n1/2) 2x2t/L2u ( x , t ) = \sum _ { n = 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=20Lf(x) sin((n1/2) πx/L) dx/Lc _ { n } = 2 \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x / L
E) u(x,t) =n0cnsin((n1/2) πx/L) e(n1/2) 2x2t/L2u ( x , t ) = \sum _ { n - 0 } ^ { \infty } c _ { n } \sin ( ( n - 1 / 2 ) \pi x / L ) e ^ { - ( n - 1 / 2 ) ^ { 2 } x ^ { 2 } t / L ^ { 2 } } , where cn=0Lf(x) sin((n1/2) πx/L) dxc _ { n } = \int _ { 0 } ^ { L } f ( x ) \sin ( ( n - 1 / 2 ) \pi x / L ) d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions