Question 16
Multiple Choice
In the previous three problems, the solution of the original problem is
A) u(x,t) =∑n−1∞cncos((n−1/2) πx/L) e−(n−1/2) 2x2t/L2 , where cn=2∫0Lf(x) cos((n−1/2) πx/L) dx/L
B) u(x,t) =∑n−1∞cnsin((n−1/2) πx/L) e−(n−1/2) 2x2t/L2 , where cn=2∫0Lf(x) sin((n−1/2) πx/L) dx/L
C) u(x,t) =∑n−1∞cncos((n−1/2) πx/L) e(n−1/2) 2x2t/L2 , where cn=∫0Lf(x) cos((n−1/2) πx/L) dx
D) u(x,t) =∑n=0∞cnsin((n−1/2) πx/L) e(n−1/2) 2x2t/L2 , where cn=2∫0Lf(x) sin((n−1/2) πx/L) dx/L
E) u(x,t) =∑n−0∞cnsin((n−1/2) πx/L) e−(n−1/2) 2x2t/L2 , where cn=∫0Lf(x) sin((n−1/2) πx/L) dx
Correct Answer:

Verified
Unlock this answer now
Get Access to more Verified Answers free of charge