Solved

In the Previous Three Problems, the Solution For u(t)u ( t )

Question 20

Multiple Choice

In the previous three problems, the solution for u(t) u ( t ) is


A) un(t) =(1) n2L(eten2a2t/L2) /(nπ(1+nπ/L) ) u _ { n } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } a ^ { 2 } t / L ^ { 2 } } \right) / ( n \pi ( 1 + n \pi / L ) )
B) ux(t) =(1) n2L(et+en2x2t/L2) /(nπ(1+n2π2/L2) ) u _ { x } ( t ) = ( - 1 ) ^ { n } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
C) ux(t) =(1) n+12L(et+en2x2t/L2) /(nπ(1+n2π2/L2) ) u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } + e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
D) ux(t) =(1) n+12L(eten2x2t/L2) /(nπ(1+n2π2/L2) ) u _ { x } ( t ) = ( - 1 ) ^ { n + 1 } 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)
E) un(t) =2L(eten2x2t/L2) /(nπ(1+n2π2/L2) ) u _ { n } ( t ) = 2 L \left( e ^ { t } - e ^ { - n ^ { 2 } x ^ { 2 } t / L ^ { 2 } } \right) / \left( n \pi \left( 1 + n ^ { 2 } \pi ^ { 2 } / L ^ { 2 } \right) \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions