Solved

The Solution of the Eigenvalue Problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0

Question 27

Multiple Choice

The solution of the eigenvalue problem y+λy=0,y(0) =0,y(1) =0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 is


A) λ=nπ,y=cos(nπx) ,n=0,1,2,\lambda = n \pi , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
B) λ=nπ,y=sin(nπx) ,n=1,2,3,\lambda = n \pi , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
C) λ=n2π2,y=cos(nπx) ,n=0,1,2,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \cos ( n \pi x ) , n = 0,1,2 , \ldots
D) λ=n2π2,y=sin(nπx) ,n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } , y = \sin ( n \pi x ) , n = 1,2,3 , \ldots
E) λ=nπ,y=cos(nπx) +sin(nπx) ,n=1,2,3,\lambda = n \pi , y = \cos ( n \pi x ) + \sin ( n \pi x ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions