Solved

Assume That x(t)x ( t ) And y(t)y ( t ) Represent the Populations of Two Competing Species at Time

Question 9

Multiple Choice

Assume that x(t) x ( t ) and y(t) y ( t ) represent the populations of two competing species at time tt . The Lotka-Volterra competition model is


A) dxdt=r1x(K1+xa12y) /K1,dydt=r2y(K2ya21y) /K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } + x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
B) dxdt=r1x(K1x+a12y) /K1,dydt=r2y(K2ya21y) /K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x + a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
C) dxdt=r1x(K1xa12y) /K1,dydt=r2y(K2ya21y) /K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y - a _ { 21 } y \right) / K _ { 2 }
D) dxdt=r1x(K1xa12y) /K1,dydt=r2y(K2+ya21y) /K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } + y - a _ { 21 } y \right) / K _ { 2 }
E) dxdt=r1x(K1xa12y) /K1,dydt=r2y(K2y+a21y) /K2\frac { d x } { d t } = r _ { 1 } x \left( K _ { 1 } - x - a _ { 12 } y \right) / K _ { 1 } , \frac { d y } { d t } = r _ { 2 } y \left( K _ { 2 } - y + a _ { 21 } y \right) / K _ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions