Solved

The Solution of the System dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y

Question 5

Multiple Choice

The solution of the system dxdt=6x5y,dydt=4x+2y\frac { d x } { d t } = - 6 x - 5 y , \frac { d y } { d t } = 4 x + 2 y is


A) x=c1e2t(2cos(2t) +4sin(2t) ) +c2e2t(4cos(2t) 2sin(2t) ) x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t) +4c2e2tsin(2t) y = 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) + 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
B) x=c1e2t(2cos(2t) +4sin(2t) ) +c2e2t(4cos(2t) 2sin(2t) ) x = c _ { 1 } e ^ { 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t) 4c2e2tsin(2t) y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )
C) x=c1e2t(4cos(2t) +2sin(2t) ) +c2e2t(2cos(2t) +4sin(2t) ) x = c _ { 1 } e ^ { - 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t) 4c2e2tsin(2t) y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
D) x=c1e2t(2cos(2t) +4sin(2t) ) +c2e2t(4cos(2t) 2sin(2t) ) x = c _ { 1 } e ^ { - 2 t } ( 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) + c _ { 2 } e ^ { - 2 t } ( 4 \cos ( 2 t ) - 2 \sin ( 2 t ) ) , y=4c1e2tcos(2t) 4c2e2tsin(2t) y = - 4 c _ { 1 } e ^ { - 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { - 2 t } \sin ( 2 t )
E) x=c1e2t(4cos(2t) +2sin(2t) ) +c2e2t(2cos(2t) +4sin(2t) ) x = c _ { 1 } e ^ { 2 t } ( 4 \cos ( 2 t ) + 2 \sin ( 2 t ) ) + c _ { 2 } e ^ { 2 t } ( - 2 \cos ( 2 t ) + 4 \sin ( 2 t ) ) , y=4c1e2tcos(2t) 4c2e2tsin(2t) y = - 4 c _ { 1 } e ^ { 2 t } \cos ( 2 t ) - 4 c _ { 2 } e ^ { 2 t } \sin ( 2 t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions