Solved

The Boundary Value Problem rd2udr2+2dudr=0,u(a)=u0,u(b)=u1r \frac { d ^ { 2 } u } { d r ^ { 2 } } + 2 \frac { d u } { d r } = 0 , u ( a ) = u _ { 0 } , u ( b ) = u _ { 1 }

Question 39

Multiple Choice

The boundary value problem rd2udr2+2dudr=0,u(a) =u0,u(b) =u1r \frac { d ^ { 2 } u } { d r ^ { 2 } } + 2 \frac { d u } { d r } = 0 , u ( a ) = u _ { 0 } , u ( b ) = u _ { 1 } is a model for the temperature distribution between two concentric spheres of radii aa and bb , with a<ba < b .The solution of this problem is


A) u=c2+c1/r, where c1=ab(u1u0) /(ba)  and c2=(u1bu0a) /(ba) u = c _ { 2 } + c _ { 1 } / r \text {, where } c _ { 1 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a ) \text { and } c _ { 2 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a )
B) u=c2+c1/r, where c1=(u1bu0a) /(ba)  and c2=ab(u1u0) /(ba) u = c _ { 2 } + c _ { 1 } / r \text {, where } c _ { 1 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a )
C) u=c2c1/r, where c1=ab(u1u0) /(ba)  and c2=ab(u1bu0a) /(ba) u = c _ { 2 } - c _ { 1 } / r , \text { where } c _ { 1 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a )
D) u=c2c1/r, where c1=(u1bu0a) /(ba)  and c2=ab(u1u0) /(ba) u = c _ { 2 } - c _ { 1 } / r \text {, where } c _ { 1 } = \left( u _ { 1 } b - u _ { 0 } a \right) / ( b - a ) \text { and } c _ { 2 } = a b \left( u _ { 1 } - u _ { 0 } \right) / ( b - a )
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions