Solved

The Eigenvalue Problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0

Question 40

Multiple Choice

The eigenvalue problem y+λy=0,y(0) =0,y(1) =0y ^ { \prime \prime } + \lambda y = 0 , y ( 0 ) = 0 , y ( 1 ) = 0 has the solution


A) y=sin(nπx) ,λ=(nπ) 2,n=1,2,3,y = \sin ( n \pi x ) , \lambda = ( n \pi ) ^ { 2 } , n = 1,2,3 , \ldots
B) y=cos(nπx) ,λ=(nπ) 2,n=1,2,3,y = \cos ( n \pi x ) , \lambda = ( n \pi ) ^ { 2 } , n = 1,2,3 , \ldots
C) y=sin(nπx) ,λ=nπ,n=1,2,3,y = \sin ( n \pi x ) , \lambda = n \pi , n = 1,2,3 , \ldots
D) y=cos(nπx) ,λ=nπ,n=1,2,3,y = \cos ( n \pi x ) , \lambda = n \pi , n = 1,2,3 , \ldots
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions